The Enterovirus 71 procapsid binds neutralizing antibodies and rescues virus infection in vitro

Procapsid-Fab complex structure and function

Kristin L. Shingler¹, Javier O. Cifuente¹, Robert E. Ashley¹, Alexander M. Makhov², James F. Conway², Susan Hafenstein¹

¹Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033 USA

²Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260 USA

*Corresponding author:

Susan Hafenstein
Division of Infectious Diseases, MC H036
Department of Medicine, Penn State University College of Medicine
500 University Drive, Hershey PA 17033
Tel: 717-531-8881
Email: shafenstein@hmc.psu.edu

Word Count Abstract: 151
Word Count Manuscript: 4,603
ABSTRACT

Enterovirus 71 (EV71) is responsible for seasonal outbreaks of hand, foot, and mouth disease in the Asia-Pacific region. The virus has the capability of causing severe disease and death, especially in young children. Although several vaccines are currently in clinical trials no vaccines or therapeutics have been approved for use. Previous structural studies have revealed that two antigenically distinct capsid forms are produced in EV71 infected cells: an expanded empty capsid, sometimes called procapsid, and the infectious virus. Specifically an immunodominant epitope of EV71 that maps to the virus canyon is structurally different between the procapsid and virus. This structure function study shows that the procapsid can sequester antibodies thus enhancing EV71 infection in vitro. The results presented here suggest that due to conformational differences between the EV71 procapsid and virus, the presence of the procapsid in natural virus infections should be considered in the future design of vaccines or therapeutics.

IMPORTANCE

In a picornavirus infection both an infectious and a non-infectious empty capsid, sometimes referred to as procapsid, are produced. It was novel to discover that the procapsid form of enterovirus 71 (EV71) was expanded and antigenically distinct from the infectious virus. Previously it had been supposed that this empty capsid was an off pathway dead end, or at best served as storage of pentameric subunits, which was later shown to be unlikely. It remains unexplained why picornaviruses evolutionarily conserve the wasteful production of so much non-infectious capsid. Here we demonstrate that the EV71 procapsid has different antigenic properties than the infectious virus. Thus the procapsid has the capacity to sequester neutralizing antibody and protect the virus, promoting or restoring a successful infection in vitro. This
Enterovirus 71 (EV71) is a human pathogen of the Picornaviridae family, a group of non-enveloped, single-stranded, (+)-sense RNA viruses, of which many share common structural features in their icosahedrally-symmetric capsids(1–4). These characteristics include a raised “mesa” at each five-fold vertex that is surrounded by a depression called the “canyon.” Beneath the canyon of infectious capsids is a hydrophobic “pocket,” likely filled with a lipid moiety called the “pocket factor.” For most picornaviruses, a specific host cellular receptor binds into the canyon and dislodges the pocket factor, which triggers the transition to an altered state or “A-particle.” A-particles subsequently release their genome into the host cytoplasm to initiate an infection, leaving behind an empty capsid, or 80S particle (5).

Several proteins have been demonstrated to serve as host receptors for EV71. Mutational evidence indicates that scavenger receptor B2 (SCARB2) may serve as the canyon-binding receptor for EV71 (6). P-selectin glycoprotein ligand 1 (PSGL-1) binds at the 5-fold vertex and enhances EV71 infection of cells that express low levels of SCARB2 (7, 8). The binding sites for sialyted glycans, annexin II, heparin sulfate, and extracellular vimentin are unknown (9–14).

After receptor-mediated cell entry, the virus replicates in the cytoplasm. A successful infection produces two icosahedral capsid forms: an empty noninfectious capsid, sometimes termed the procapsid (15), and an infectious virus with an encapsidated genome (16). Cryo-electron microscopy (cryo-EM) reconstructions and x-ray crystallography structures are available for both naturally occurring capsid forms and highlight important differences between the particles (4,
The EV71 procapsid is composed of 60 copies each of the structural proteins VP0, VP1, and VP3, and has an increased diameter when compared to the infectious virus. Although the procapsid is produced in equal amounts as infectious virus, it is not known if the procapsid serves as an assembly intermediate into which the genome is packaged, or if it exists as a dead-end byproduct of the capsid morphogenesis process (20). After autocatalytic cleavage of VP0 to form VP2 and VP4 the infectious virus is composed of 60 copies each of VP1-4. These proteins enclose the viral genome within an icosahedral particle that is smaller and more compact than procapsid. Protein rearrangements must occur to accommodate the different sizes of the procapsid and virus capsid, resulting in antigenically distinct particles (4).

Currently, EV71 poses a worldwide health threat, as it is a causative agent of seasonal epidemics of hand, foot, and mouth disease (HFMD) in the Asia-Pacific region, and can be detected globally (21). EV71 infections can progress through distinct stages of increasing clinical severity: (1) HFMD/herpangina, (2) central nervous system involvement often presenting as meningitis or brainstem encephalitis, (3) cardio-pulmonary failure, and (4) death (22). Most often EV71 infection is asymptomatic or does not advance past stage one of clinical presentation. The majority of cases that progress to severe disease occur in young children. Follow-up studies have demonstrated that survivors of these severe infections can suffer long-term complications such as reduced cognitive function and delayed development (23, 24). There are currently no effective treatments or vaccines to combat EV71 infection and ongoing research efforts have been complicated by the diversity of the capsid sequence.

EV71 is classified in the species enterovirus A, one of nine species (A-J) within the Enterovirus genus of the Picornaviridae family. This virus circulates as one serotype and is divided into three genogroups (A, B, and C) that are further separated into eleven genotypes (A,
B1-B5, and C1-C5). Classification of EV71 using this system is based on the VP1 sequence, which is the most variable, surface exposed, and immunogenic structural protein. Several recent studies have identified regions of the EV71 capsid that can elicit strong neutralizing antibodies in mice by using a successive peptide screening method (25, 26). These immunogens, named SP55 and SP70, are located in the VP1 protein and span amino acids 163 to 177 and 208 to 222, respectively. The epitope corresponding to SP70 is of particular interest as its sequence is conserved throughout the eleven genotypes and it is readily accessible on the capsid exterior. Mice inoculated with purified infectious capsids generate antibodies to the SP70 epitope (27). This epitope maps to the VP1 “GH” loop at the edge of the canyon. Li et al. generated a monoclonal antibody (22A12) against the SP70 peptide that efficiently neutralized virus infection of RD cells in culture (28). However, the mechanism of neutralization for antibody 22A12 is unknown.

Our current study examines the neutralization capacity and mechanism of monoclonal antibody 22A12 against EV71 infection. We show that Mab22A12 has stronger binding to the procapsid form of EV71 than to the infectious virus. The cryo-EM reconstruction of fragments of antibody 22A12 (Fab22A12) in complex with EV71 procapsid suggests that Mab22A12 has the ability to block receptor binding and subsequent cellular entry. However, the failure of Fab fragments to neutralize EV71 infection indicates that the predominant mechanism of neutralization conferred by Mab22A12 is likely cross-linking of viral capsids. Evolutionary conservation of the production of picornavirus procapsid has yet to be explained. The work presented here shows that the procapsid can act \textit{in vitro} as an antibody “sink,” effectively sequestering antibody, which consequently allows virus infection.
MATERIALS AND METHODS

Virus Propagation and Purification

EV71 strain 1095/Shiga (genogroup C2) was propagated and purified as described previously (29). Briefly, confluent HeLa cell (Hafenstein Lab cell collection) monolayers were infected (Multiplicity of Infection = 0.1), incubated at 37°C for 24 hours, and lysed by three freeze-thaw cycles. After removal of cellular debris, the virus was precipitated overnight with 8% Polyethylene glycol 8K and 0.5M NaCl, and purified by ultracentrifugation. The EV71 procapsid and infectious virus formed distinct bands in the gradient as reported previously (4, 29, 30). Virus concentration was determined by absorbance at 280 nm for procapsid and 260 nm for infectious virus.

Antibody Fragment Preparation

Purified murine monoclonal antibody 22A12 raised against the SP70 peptide of EV71 was obtained from SydLabs (Maiden, MA). Fragments of antibody (Fab) were generated using the Pierce Fab Micro Preparation Kit (Thermo Scientific). In brief, Mab22A12 at 1 mg/mL was incubated with immobilized papain for 5 hours at 37°C with gentle rocking. Fab fragments were separated from Fc fragments and undigested Fab with a Protein A column, buffer was changed to PBS, and the concentration assessed by absorbance at a wavelength of 280 nm.

Complex Formation and Negative Stain Transmission Electron Microscopy

Purified EV71 procapsid or infectious virus (0.1 mg/mL concentration) was incubated with excess Fab22A12 (4 mg/mL) at a ratio of two Fab per every virus binding site, on ice for 15 minutes. 3 μL of sample was applied to a freshly glow discharged continuous carbon coated
copper EM grid and negative stained with 3 μL of uranyl formate. Grids were visualized with the JEOL 1400 transmission electron microscope housed in the imaging facility at The Pennsylvania State University College of Medicine.

BLItz Binding Assay

0.3 μL of 1 mM EZ-Link Sulfo-NHS-LC-LC-Biotin (Thermos Scientific) was added to 2 mL of EV71 procapsid (0.1 mg/mL in PBS) to achieve a molecular coupling ratio of 10:1. After incubation at room temperature for 30 minutes the preparations were placed in kinetics buffer (PBS, 0.1% BSA, 0.02% Tween-20) and concentrated to 0.5 mg/mL using 100 kD molecular weight cut-off centricons (Millipore) to remove any unreacted biotin. Procapsid was loaded onto a streptavidin (SA) biosensor for 4 minutes. Immobilized procapsid was allowed to associate with Fab22A12 (0.7 mg/mL in kinetics buffer) for two minutes. The sensor was then placed in kinetics buffer to allow dissociation of Fab for 2 minutes. The association of Fab22A12 with an unloaded SA biosensor was used to assess and minimize the nonspecific binding of Fab molecules. Procapsid bound to a SA biosensor was allowed to associate with kinetics buffer alone (no Fab22A12) to serve as a loading control. The same protocol was performed with infectious virus. Five concentrations of Fab22A12, increasing from 0.04 to 0.7 mg/ml were tested independently with both immobilized procapsid and infectious virus. Only the highest concentration of Fab was detected by infectious virus in four independent replicates, and these data were presented in Fig. 6. Only biosensors with the same amount of loading signal (2 nm) for procapsid and infectious virus were used for Fab22A12 association.

Cryo-EM data collection and processing
Aliquots of EV71 procapsid or infectious virus incubated with Fab22A12 were vitrified for cryo-EM data collection using an FEI Vitrobot Mark III freezing robot (FEI, Hillsboro, OR). Sample was applied to freshly glow discharged holey carbon Quantifoil EM grids, blotted, and plunge frozen into a 60:40 mixture of liquid ethane and propane cooled in a bath of liquid nitrogen. Data were collected using a FEI Tecnai TF-20 transmission electron microscope equipped with a field emission gun operating at an accelerating voltage of 200 kV. Images were captured at 50,000X magnification on Kodak SO-163 film (Kodak, Rochester, NY). A Nikon Super Coolscan 9000 scanner was used with a sampling rate of 6.35 µ/pixel to digitize the micrographs, creating a final pixel size of 1.27Å at the sample. The preliminary reconstruction generated from EV71 infectious virus and Fab22A12 had poor Fab occupancy and was not further processed (31). The EV71 procapsid-Fab complexes (with noticeable occupancy of Fab22A12) were selected using the interactive boxing function of EMAN2 (32). Linearization, normalization, apodization, contrast transfer function correction, and 3D reconstruction were carried out using AUTO3DEM (31). Resolution was determined by comparing half dataset maps using Fourier shell correlation at a cutoff of 0.5 (Fig. 2b).

Absolute Pixel Size Assessment and Difference Map Calculation

The EV71-1095 procapsid crystal structure (PDB ID 4GMP) was used to calculate a density map with similar quality and resolution of the Procapsid-Fab complex (17). This calculated map was then scaled and compared to the cryo-EM reconstruction to determine the absolute pixel size of 1.27Å/pixel (33). The difference map was made by subtracting the calculated procapsid density from the procapsid-Fab22A12 complex density map (34).
Fitting Analysis

The procapsid crystal structure (PDB ID 4GMP) (17) was fitted and refined into the cryo-EM density map using the CoLoRes package (34). The crystal structure of a murine Fab and its variable domain alone (PDB ID 3GK8) (35) were fitted into the Fab difference map. Icosahedral symmetry operators were applied to the best fits of 4GMP and 3GK8 as assessed by correlation coefficient and this psuedoatomic model was refined to minimize clashes (34). Contacts between the EV71 procapsid and Fab were determined using CCP4 (36) with a 7Å distance between atoms to identify any possible interactions. After splicing the ordered structure of VP1 210-220 from the virus into the fitted procapsid, potential contact residues were identified 4Å from the fitted Fab structure. Radial Fab density at the connection point between Fab and procapsid (radii 155-160Å) was projected onto the roadmap of the procapsid using RIVEM (37). The distance between the most C-terminal Cα atoms of two adjacent Fab molecules in the pseudoatomic model was measured in Chimera (33).

Antibody Neutralization Assay

Minimally purified cell lysates are used as virus inoculum. Infected HeLa cells are harvested, frozen at -80°C and thawed at room temperature for three cycles. Centrifugation at 4500xG for five minutes is used to pellet cellular debris. The clarified virus inoculum is aliquoted and stored at -80°C. 100 μL of HeLa cells at a density of 7x10⁴ cells/mL were seeded into each well of a 96-well plate and incubated at 37°C for 24 hours. Cells were rinsed with PBS and then incubated at 37°C with 50 μL of EV71 inoculum (3.2x10⁴ pfu/mL) that had been pre-incubated at 37°C for 1 hour with 2-fold dilutions of Mab22A12 (starting concentration of 1 mg/mL) or Fab22A12 (starting concentration of 0.5 mg/mL) in DMEM. The amount of inoculum and virus required to
induce CPE of HeLa cells in 48 hours was assessed independently for normalization. After 1 hour 50 μL of DMEM supplemented with 5% FBS was added to each well and the infection was allowed to proceed for 48 hours at 37°C. Cells were then rinsed with PBS, fixed with 4% formaldehyde for 5 minutes, and stained with 0.1% crystal violet in 20% ethanol for 30 minutes. Wells with no blue staining were scored as positive for CPE. Each assay included PBS treated cells as a positive control and cells infected with EV71 inoculum as negative controls. The same protocol was used for purified infectious virus (1.0 x10^{-6} mg/mL). Each experiment contained 5 replicates, and was repeated two times, independently. Figures were generated in excel using standard error bars.

Procapsid Competition Assay

100 μL of HeLa cells at a density of 7x10^4 cells/mL were seeded into each well of a 96-well plate and incubated at 37°C for 24 hours. Cells were rinsed with PBS and incubated with 50 μL of a mixture of purified EV71 infectious virus (10x10^{-5} mg/mL), Mab22A12 (0.0625 mg/mL), and a 2-fold dilution series of purified EV71 procapsid (starting concentration 1 mg/mL) in DMEM that had been pre-incubated for 1 hour at 37°C. Inoculated cells were incubated at 37°C for 1 hour. 50 μL of DMEM supplemented with 5% FBS was added to each well and the incubation was allowed to proceed for 48 hours at 37°C. Cells were rinsed with PBS, fixed with 4% formaldehyde for 5 minutes, and stained with 0.1% crystal violet in 20% ethanol for 30 minutes. CPE was evaluated as described above. PBS treated cells, cells incubated with purified infectious EV71 and Mab22A12, procapsid, and infectious virus alone served as controls. Native virus treated with 1:2, 1:4, and 1:8 dilutions of mock lysate (HeLa cells lysed by three freeze-thaw cycles and centrifugation at 4500 rpm for 5 minutes) was used to determine the effect of
cellular debris on virus infectivity. Additionally, native virus incubated with procapsid in the above ratios without Mab served as a control for the effect of procapsid in the absence of antibody. Each experiment contained 5 replicates, and was repeated two times, independently.

RESULTS

Fab22A12 decorates the EV71 procapsid, but not the infectious virus

Incubation of purified EV71 infectious virus with excess fragments of antibody 22A12 (Fab22A12) resulted in only a few Fab binding to each capsid. This low occupancy visualized in the cryoEM data did not yield sufficient density of Fab for interpretation in the three-dimensional (3-D) image reconstruction (data not shown). However, a small percentage of empty capsids, which are either procapsid or 80S, visible in the micrographs were decorated with Fab molecules (Fig. 1a). Therefore, purified EV71 procapsids were incubated with Fab22A12. Negative stain TEM verified that the Fab bound efficiently to the procapsids (data not shown) and the sample was subsequently vitrified and used for cryo-EM data collection (Fig. 1b).

Fab22A12 binds EV71 procapsid at the canyon in the region of the VP1 GH loop

The EV71 procapsid and Fab22A12 complex was reconstructed to 8.8Å resolution (Fig. 2a,b). The central section of the resulting cryo-EM density map showed that the Fab variable domain density was weaker overall compared to the capsid shell. These densities suggest that Fab22A12 does not bind all of the 60 available binding sites on the surface of the icosahedron (Fig. 2c). The Fab density extends radially from the EV71 canyon region (Fig. 2d) with very weak outer density corresponding to the Fab constant domain (Fig. 2c, d). Likely the flexible hinge of Fab22A12 allows for movement of the constant domain resulting in the weak cryo-EM density. The location of Fab22A12 binding is similar to the receptor binding of other picornaviruses (38–
that require an interaction with a host molecule into the virus canyon to initiate entry. Thus, the Fab binding suggested that antibody 22A12 might act to block receptor binding or mimic a canyon binding receptor.

Fitting of the EV71 procapsid crystal structure (PDB ID 4GMP)(17) yielded a correlation coefficient (cc) of 0.87 indicating that Fab binding induced no detectable conformational changes. The procapsid density was subtracted from the complex map (see Methods) to generate a difference map (Fig. 3a), into which a murine Fab crystal structure (PDB ID 3GK8) (35) was fitted (cc = 0.79). Due to the low density of the constant domain, the Fab variable domain was fitted alone and yielded a higher correlation (cc=0.87). The independently fitted Fab and variable domain structures were similar (RMSD = 1.88Å) suggesting that the weak constant domain density did interfere with fitting analyses (Fig. 3b). Therefore the variable domain alone was used for refinement of the fitted crystal structures to produce a pseudoatomic model (see Methods). The interface between Fab and procapsid mapped to the VP1 GH loop, which is disordered in the EV71 procapsid crystal structure (Fig. 3b). Thus, a pseudo-atomic model could not be used to identify all contacts and an alternative approach was used to map the antibody footprint. At the binding interface of the Fab, a radial section of the cryo-EM complex map density was projected onto the surface of the EV71 procapsid to identify the potential binding footprint (37). The Fab22A12 density was represented as contour lines on the roadmap of the EV71 procapsid surface (Fig. 4) (42). This analysis showed that the Fab22A12 footprint extended into the shallow EV71 canyon (Fig. 4) suggesting that the Fab may block the canyon.

The epitope corresponding to the SP70 peptide is structurally different between procapsid and infectious virus
The SP70 peptide spans VP1 amino acids 208-222. Amino acid residues 211-217 of the GH loop are disordered in the procapsid, but form a structured loop in the infectious virus (Fig. 5). To identify the Fab22A12 footprint, amino acid residues 208-220 of VP1 from the infectious virus crystal structure (PDB ID 3VBS)(4) were superimposed on the fitted EV71 procapsid. This hybrid model was used to identify contact residues 215, 217, and 218 of the VP1 protein, which are all part of the SP70 peptide. Alanine substitution experiments have shown previously that these residues, as well as amino acid 219, were essential for binding of Mab22A12 to EV71 capsids (43). The different structures of the GH loop in procapsid and infectious virus suggest altered affinity and/or accessibility of this epitope to the 22A12 antibody.

Procapsid interacts with Fab22A12 more strongly than infectious virus in a binding assay

Biolayer interferometry (BLItz) was used to quantify the association of EV71 procapsid or infectious virus with Fab22A12(44). Biotinylated procapsid or infectious virus was immobilized on a streptavidin sensor before association and dissociation with Fab22A12 (see Methods). EV71 procapsid associated with Fab22A12 in a dose-dependant manner. However, the association of Fab22A12 with EV71 infectious virus was only detectable at the highest concentration tested (see Methods). This BLItz data showed Fab22A12 readily associated with immobilized procapsid at a detectable signal corresponding to ~2nM. However infectious virus binding was poor, with an association signal of less than 1nM in each of the independent experiments (44) (Fig. 6). Thus, procapsid binds Fab22A12 more effectively than infectious virus.

Mab22A12 cannot bind capsids bivalently
Although Fab22A12 binds infectious virus only weakly, Mab22A12 is nonetheless effective at neutralizing infectivity. The procapsid-Fab complex structure can be used to distinguish between different modes of binding virions, including cross-linking different capsids and binding bivalently to the same capsid (45, 46). The distance between the two closest adjacently bound Fab molecules on the EV71 procapsid surface was measured to be 64Å (see Methods), demonstrating that an intact antibody could not bind bivalently. However, the infectious virus is 4% smaller in diameter than the procapsid. Therefore, the refined pseudoatomic structure of a Fab and protomer was superimposed on a infectious capsid protomer (PDB ID 3VBS) (4) to generate a simulated virus-Fab complex. In this structure the distance between the closest symmetry related Fabs (61 Å) was still too great to allow bivalent binding of an antibody (45, 46). These results suggest that avidity is not required for Mab binding.

Mab22A12, and not Fab22A12, neutralizes purified EV71 infectious virus

To investigate the neutralization ability of Mab22A12 and its Fab fragments, micro neutralization assays were performed. Increasing concentrations of Mab22A12 (or Fab) were incubated with purified EV71 infectious virus at 37°C for 1 hour before infecting HeLa cell monolayers. 48 hours post infection the neutralization capacity was determined by the survival of HeLa cells. The relatively low affinity for virus binding does not prevent Mab22A12 from effectively neutralizing purified virions at low concentration of Mab (7.8x10^{-3} mg/mL)(Fig. 7). However, after 48 hours of infection all cells incubated with EV71-Fab22A12 were no longer viable (data not shown). Thus, Fab does not have the capacity to neutralize virus. This result demonstrates that the mechanism of neutralization depends on the presence of both antigen
binding fragments and/or the Fc region of the antibody. One possible mechanism of neutralization may be cross-linking of virus capsids.

Mab22A12 does not effectively neutralize virus inoculum, which is a mixture of procapsid and infectious virus

Clarified cell lysates, or “inoculum”, are often used for laboratory assessment of virus infectivity (see Methods). These inoculums include a mixture of procapsid and infectious virus along with minor amounts of cellular debris and represent an *in vivo* infection. The ability of Mab22A12 to neutralize EV71 inoculum was tested. Inoculum was pre-incubated with Mab22A12 before infecting HeLa cells and cell survival was recorded after 48 hours, as described above. Mab22A12 poorly neutralized virus inoculum, with only two antibody concentrations (0.5 and 0.25 mg/mL) preventing cytopathic effects (CPE) (Fig. 7). This loss of 22A12 neutralization ability indicates that a component of the inoculum is preventing antibody from neutralizing infectious virus.

EV71 procapsid protects infectious virus from antibody neutralization

The putative role of procapsid in preventing antibody neutralization of inoculum was investigated by a microneutralization competition assay. In all conditions the amount of neutralizing Mab22A12 used was greater than that required to neutralize the purified infectious virus. This excess neutralizing ratio of Mab to infectious virus was held constant throughout the experiment. Purified procapsid was added at increasing concentrations until the number of procapsid exceeded the number of infectious virus. Thus, the effect of the presence of procapsid on virus infectivity was assessed and quantified directly. When the ratio of the number of
procapsid to infectious virus reached 1:4 (procapsid:virus) the infectivity of EV71 was restored to 50%. At ratios where the number of procapsid exceeded the number of virus, infectivity was nearly 100% even though neutralizing antibody was present (Fig. 8). The experiment was repeated without Mab22A12; incubating purified virus and procapsid alone had no effect on virus infectivity revealing that procapsid does not enhance infectivity of virus (data not shown). This result indicates that procapsid rescues EV71 infection in vitro by preferentially binding neutralizing antibody as suggested by our initial microscopy experiment (Fig. 1a).

DISCUSSION

Here we present a structure function investigation of the EV71 neutralization mechanism of Mab22A12. The known epitope, VP1 208-222, includes the GH loop that is disordered in the procapsid but has secondary structure in the infectious virus (Fig. 5). These structural differences in the binding interface likely dictate the ability of antibody to bind procapsid better than infectious virus. Mab22A12 was raised against a linear peptide (28), supporting the conclusion that the flexible procapsid epitope is a better binding site than the structured epitope presented by the infectious virus.

Previously published structural studies of fragments of neutralizing antibodies bound to picornavirus capsids have identified multiple mechanisms of neutralization (45–49) that include cross-linking, capsid stabilization, blocking receptor binding, inducing genome release, and marking capsids for clearance by host immune systems. Our 8.8Å resolution reconstruction of Fab22A12-procapsid complex reveals Fab bound to the canyon region (Fig. 2 & 4) suggesting that the Fab might mimic the host cell receptor. Electron micrographs of infectious virus incubated with Fab22A12 showed no loss of RNA and the 3-D reconstruction revealed no
changes to the capsid (data not shown). Thus Fab22A12 does not act as a canyon-binding receptor to trigger A-particle formation. Alternatively, antibodies bound at the canyon of other picornaviruses have been shown to neutralize by capsid stabilization and/or blocking receptor binding (50, 51). However, the low affinity of Fab22A12 argues against the ability of antibody to stabilize capsids or out-compete the receptor effectively.

The failure of antibody 22A12 to neutralize as Fab fragments, even at high concentrations (0.5 mg/mL), suggests that the Fc region mediates the antibody’s neutralization mechanism. Two possibilities are bivalent binding and cross-linking of capsids, both of which require complete antibody molecules with two Fab domains (45, 46). However, the distance between adjacent bound Fab22A12 molecules demonstrates that Mab22A12 could not bind bivalently to a single procapsid or infectious virus. Thus, it is likely that antibody 22A12 neutralizes EV71 infections predominantly by cross-linking capsids although the ability to block receptor binding may play a minor role.

Despite the low binding affinity of Mab22A12 for infectious virus, in vitro infection is efficiently neutralized at the low molar ratio of one antibody molecule per virus binding site (Fig. 7). However, significantly more antibody (12 antibody molecules per binding site) is required to neutralize virus when small amounts of purified EV71 procapsid (one procapsid to every 16 infectious virus) are added to the incubation (Fig. 8). Even this large excess of Mab is insufficient for neutralization when the procapsid:virus ratio increases to one procapsid per every four infectious virus. This competition for antibody binding demonstrates that the presence of procapsid is sufficient to rescue infectivity.

Picornaviruses produce both procapsid and infectious virus during the course of an infection. A function for the production of large amounts of procapsid has yet to be determined.
For EV71, the procapsid is radially expanded compared to the infectious virus and is antigenically distinct. Here we propose the EV71 procapsid has the capacity to advance the infectivity of infectious virus. The EV71 procapsid contains a more favorable Mab22A12 binding site than virus, suggesting the procapsid binds and sequesters antibody to rescue the infectivity of EV71 (Fig. 9). Although Mab22A12 was raised against SP70 peptide, it is important to note that mice inoculated with purified virus capsids also raise antibodies against the Mab22A12 epitope (27). This is the first time a function has been demonstrated for a picornavirus procapsid, and may explain the evolutionary conservation of procapsid assembly during infection.

Our findings also indicate a need for a revised strategy for the design and evaluation of vaccines and therapeutics targeting EV71 infection. Using inoculum, procapsid, or peptide fragments does have the capability of producing neutralizing antibodies (25, 48, 52–54). However, consideration of both antigenic forms of the EV71 capsid is critical. An increased understanding of the antigenicity of procapsid and virus will build a comprehensive model for the natural infection, and be a better indicator of the *in vivo* success of potential vaccines and therapeutics.

ACCESSION CODES

The EV71 procapsid-Fab22A12 cryo-EM density map was deposited in the EMDB (XXXX). The fitted EV71 procapsid crystal structure and murine Fab molecules were deposited in the PDB (YYYY and ZZZZ, respectively).

ACKNOWLEDGEMENTS
This project is funded, in part, under a grant with the Pennsylvania Department of Health using Tobacco CURE Funds. We thank the Microscopy Imaging Shared Core Facility at the Pennsylvania State University College of Medicine. The work was made possible by an NIH SIG 1S10RR031780-01A1 award to SH.

Figure Legends

Figure 1 EV71 infectious virus (a) and procapsid (b) incubated with excess Fab22A12. (a) Few Fab22A12 molecules are bound to infectious virus, whereas empty capsids are clearly decorated with Fab (black arrows). (b) The Fab22A12 binding to EV71 procapsid is visually evident. Scale bars are equal to 100nm.

Figure 2 The EV71 procapsid binds Fab22A12 at the canyon. (a) The surface rendered cryo-EM density map of Fab22A12 in complex with EV71 procapsid is displayed at 1σ, radially colored as depicted by the scale bar, and labeled to indicate icosahedral symmetry axes. (b) The Fourier
shell correlation for the cryo-EM reconstruction falls below 0.5 at a resolution of 8.8Å. The central section of the cryo-EM density shown in (a) shows Fab density less than that of the capsid, indicating Fab was not bound to all 60 binding sites. The blurred density of the constant region suggests flexibility of the hinge region of the Fab. (d) A close-up view of one Fab molecule binding at the canyon (black arrow) surrounding the icosahedral five-fold mesa of the EV71 procapsid. The constant region of the Fab (dark blue) has less density than the variable region (light blue), likely due to flexibility of the Fab hinge region.

Figure 3 (a) A calculated procapsid map was subtracted from the EV71 procapsid-Fab22A12 complex to generate a difference map, which is shown surface rendered at 1σ indicating strong Fab density (blue) and interior noise (red). (b) The crystal structures of the EV71 procapsid (yellow, PDB ID 4GMP) and a murine Fab molecule (dark blue, PDB ID 3GK8), and a murine Fab variable domain (light blue) were fitted into the cryo-EM density map (gray mesh). The fitted variable domain superimposes onto the fitted Fab with an RMSD=1.88Å. The pseudoatomic model shows that the disordered GH loop of VP1 (magenta, black arrow) is at the interface between the procapsid and Fab.

Figure 4 The EV71 procapsid surface is shown as a stereographic projection where the polar angles θ and φ represent latitude and longitude, respectively (37) with the procapsid topology represented as a quilt of amino acids (42). The icosahedral asymmetric unit of the virus is indicated by the triangular boundary. Due to the disordered VP1 GH loop only one of the three identified contacts (blue) is shown. The radial density of the complex map corresponding to the
interface between Fab and virus (radii 155-160Å) was projected onto the procapsid surface and
the red contours are shown overlapping with a region of the canyon (thick black outline).

Figure 5 The location and structure of the VP1 SP70 Peptide. Ribbon diagrams depicting the
VP1 protein in the (a) EV71 procapsid (PDB ID 4GMP) and (b) EV71 infectious virus (PDB ID
3VBS) reveal conformational differences. Amino acids 211-218 of the SP70 peptide (red boxes)
are flexible and disordered in the procapsid (a), but form an ordered structural loop in the
infectious virus (b).

Figure 6 BLItz was used to determine the relative Fab22A12 binding capability of the EV71
procapsid compared to infectious virus. After an initial baseline reading in running buffer (a),
biotinylated EV71 procapsid or infectious virus was immobilized on a streptavidin sensor (b).
The increase in line slope from a to c, indicates two nm loading for both. A second baseline was
recorded (c) before the sensor was inserted into the solution of purified Fab22A12. The Fab and
sensor association step (d) (two minutes) is followed by a subsequent dissociation step (e) (two
minutes). Vertical red lines indicate transition from one experimental step to the next. The EV71
procapsid (dark blue) associates readily with Fab22A12, however EV71 infectious virus (light
blue) binds Fab22A12 at low levels. The association step has been aligned and magnified to
highlight the differences in the binding signal intensity.

Figure 7 As the amount of Mab increases, infectivity decreases and there are significant
differences in the neutralization of inoculum and purified infectious virus. EV71 infectious virus
preincubated with Mab22A12 (red line) was incapable of infecting HeLa cells at all but one
tested concentration of antibody, indicating efficient neutralization of purified virus. However, EV71 inoculum (mixture of infectious virus and procapsid) preincubated with the same amount of Mab22A12 (blue line) readily infected cells, causing severe CPE and death. Data were collected from two independent experiments that contained five replicates each. Error bars denote standard error.

Figure 8 EV71 procapsid inhibits neutralization of infectious virus by Mab22A12. Purified EV71 infectious virus (1x10^{-5} mg/mL) preincubated with Mab22A12 (6.25x10^{-2} mg/mL) was incapable of infecting HeLa cells. As increasing amounts of purified procapsid were added to the mixture of virus and antibody the infectivity level of infectious virus increased, causing severe CPE and death of HeLa cells. The x-axis indicates the ratio of the number of procapsid present per infectious virus. Data were collected from two independent experiments that contained five replicates each. Error bars denote standard error.

Figure 9 The antigenically different EV71 procapsid (yellow) binds efficiently and sequesters neutralizing Mab22A12 (blue) in vitro. This preferential binding minimizes the amount of unbound Mab, which protects infectious virus (red) allowing successful binding to susceptible cells to initiate an infection. This result suggests a model for a potential function of procapsid to enhance infectious virus infectivity because of altered antigenicity between the two capsid forms.