In Vitro Assembly of the øX174 Procapsid from External Scaffolding Protein Oligomers and Early Pentameric Assembly Intermediates

James E. Cherwa Jr1,2†, Lindsey J. Organtini3, Robert E. Ashley3, Susan L. Hafenstein3 and Bentley A. Fane1,2⁎

1School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
2The BIO5 Institute, Keating Building, The University of Arizona, Tucson, AZ 85721-0240, USA
3Division of Infectious Diseases, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA

Received 31 May 2011; received in revised form 29 July 2011; accepted 31 July 2011
Available online 5 August 2011
Edited by J. Karn

Keywords:
virus morphogenesis; Microviridae; microvirus

Bacteriophage øX174 morphogenesis requires two scaffolding proteins: an internal species, similar to those employed in other viral systems, and an external species, which is more typically associated with satellite viruses. The current model of øX174 assembly is based on structural and in vivo data. During morphogenesis, 240 copies of the external scaffolding protein mediate the association of 12 pentameric particles into procapsids. The hypothesized pentameric intermediate, the 12S* particle, contains 16 proteins: 5 copies each of the coat, spike and internal scaffolding proteins and 1 copy of the DNA pilot protein. Assembly naïve 12S* particles and external scaffolding oligomers, most likely tetramers, formed procapsid-like particles in vitro, suggesting that the 12S* particle is a bona fide assembly intermediate and validating the current model of procapsid morphogenesis. The in vitro system required a crowding agent, was influenced by the ratio of the reactants and was most likely driven by hydrophobic forces. While the system reported here shared some characteristics with other in vitro internal scaffolding protein-mediated systems, it displayed unique features. These features most likely reflect external scaffolding protein-mediated morphogenesis and the øX174 procapsid structure, in which external scaffolding–scaffolding protein interactions, as opposed to coat–coat protein interactions between pentamers, constitute the primary lattice-forming contacts.

Introduction

Bacteriophage øX174 morphogenesis combines features of seemingly disparate prokaryotic and eukaryotic viral systems. Capsid assembly involves the association of pentameric assembly intermediates, a feature shared with polyoma, papilloma and picornaviruses. However, as observed with many bacteriophages and herpesviruses, morphogenesis requires scaffolding proteins to lower thermodynamic assembly barriers and ensure morphogenetic fidelity. Most scaffolding-dependent systems utilize a single internal scaffolding protein, and the assembly-reactive coat protein is usually a monomer.
or a dimer, which does not display a defined stoichiometry with the scaffolding protein.11-13 In contrast, the øX174 internal and external scaffolding proteins, B and D, respectively, exhibit strict stoichiometric relationships with the coat protein in both the procapsid and the early assembly intermediates.

Like the “classical” P22 and herpes simplex virus scaffolding proteins,14,15 the øX174 B protein prevents coat protein aggregation and facilitates minor structural protein incorporation,16-18 whereas protein D assembles pentameric intermediates into the procapsid (Fig. 1b). Viable multiple mutants that no longer require the internal scaffolding protein have been isolated.19 Most of the mutations in this “B-free” strain affect the external scaffolding protein, its interactions with the viral coat protein and its expression level, which is grossly exaggerated. Along with the atomic structure of the procapsid,20,21 these data indicate that the external scaffolding protein is more critical for morphogenesis. This may be a general feature of dual scaffolding protein systems.22 In vitro, the Sid protein, an external scaffolding protein encoded by satellite virus P4, can assemble P2 coat proteins into P4 procapsids,22 circumventing the in vivo requirement of the P2 internal scaffolding protein. Despite this similarity, proteins D and Sid may operate via different mechanisms. The Sid protein alters capsid dimensions by forming a dodecahedral lattice that forces a growing coat protein shell into a smaller procapsid.22-24 In contrast, the øX174 external scaffolding protein is the major lattice-forming molecule.20,21,25 As can be seen in Fig. 1a, removing the external scaffolding protein density from the procapsid cryo-electron microscopy structure reveals underlying coat protein pentamers that make little or no contact with each other.25 Thus, the coat protein pentamers act as a template on which external scaffolding proteins associate, but scaffolding–scaffolding interactions both form and maintain procapsid integrity.

Although in vitro capsid assembly systems have been established for many viruses,2,3,12,13,22,26-32 the complexity of the øX174 procapsid has complicated in vitro reconstitution. Dissociation–reassociation studies were hindered by the heterogeneity of the dissociation products and the internal scaffolding protein’s autoproteolytic activity.25 Purifying proteins individually from cells expressing the requisite genes proved equally problematic. Consequently, an alternate strategy was developed. It utilized a recently isolated, putative, assembly intermediate that contains a stable internal scaffolding protein.33 The current version of the øX174 assembly pathway is illustrated in Fig. 1b. It differs from previous pathways1,18,34 by the inclusion of two B protein-containing early intermediates, the 9S* and 12S* particles. These particles accumulate in the absence of the external scaffolding protein and can be easily purified.33 The 12S* particle is composed of five copies each of the coat, spike and internal scaffolding proteins and one copy of the DNA pilot protein H. In vitro, it was assembled into procapsid-like particles by the external scaffolding protein, presumably in the form of a tetramer, suggesting that the 12S* particle is a bona fide assembly intermediate. While the assembly system reported here shared some characteristics with other in vitro scaffolding protein-mediated systems, it displayed unique features that most likely reflect external

![Fig. 1. Procapsid structures and assembly pathway. (a) Cryo-electron microscopy image reconstruction of the complete procapsid (left), density attributed to the coat protein pentamers (middle) and density attributed to the external scaffolding protein lattice (right). Figure courtesy of Drs. R. Bernal and M. G. Rossmann. (b) øX174 procapsid morphogenesis.](image)
scaffolding protein-mediated morphogenesis and lattice formation.

Results

The external scaffolding protein used in the in vitro assembly reactions is most likely oligomeric

As described in Materials and Methods, the øX174 external scaffolding protein was purified from cells expressing a cloned wild-type gene. A large D protein band was evident in the whole-cell lysate analyzed by SDS-PAGE (data not shown). However, protein D exists in several oligomeric states in solution. Therefore, whole-cell lysates and purified preparations were examined by native 7.5% polyacrylamide gel electrophoresis. Several novel bands were present in the whole-cell lysate (Fig. 2a). After purification, only one band was evident (Fig. 2b). As D protein’s molecular mass is 16.9 kDa, the band’s migration rate was most consistent with a tetramer. It is not known whether the utilized protocols selectively purified tetramers or the other oligomers were converted into this species during or after purification.

Procapsid-like particles can be assembled in vitro from pentameric 12S* intermediates and external scaffolding protein oligomers

The initial in vitro assembly reactions were performed with a 4.0% (w/v) polyethylene glycol (PEG)-3350 buffer under relatively low ionic conditions [2.5 mM NaCl, 9.0 mM MgCl2 and 50 mM Tris–HCl (pH 7.5)]. The respective concentrations of the external scaffolding protein and 12S* particles were 0.24 mg/ml and 0.18 mg/ml. Mixed- and single-component reactions were simultaneously executed. Following a 40-min incubation at 37 °C, assembled particles were separated from unassembled components by rate-zonal sedimentation. After centrifugation, each 5.0-ml gradient was divided into approximately 40 fractions. Fractions were analyzed by UV spectroscopy (OD280). For the single-component reactions (Fig. 3), no large particles were detected in the faster sedimenting fractions where procapsids (108S) and virions (114S) typically sediment. However, they were present in the fractions derived from the in vitro assembly reaction.

Gradient fractions were also examined by SDS-PAGE. No proteins were observed in the faster sedimenting fractions derived from the single-component reactions (data not shown). In contrast, all procapsid proteins were detected in the faster sedimenting fractions of the in vitro assembly reaction (Fig. 4a). Unassembled components remained at the top of the gradient, clearly separated from the more rapid sedimenting particles. The in vitro assembled procapsid-like particles and in vivo generated procapsids were examined by SDS-PAGE (Fig. 4b). The relative concentration of each protein was determined by densitometry. No significant differences between the two samples were detected (Table 1). To assay whether the in vitro assembled particles sediment like procapsids (108S), we added 1.0×10⁴ infectious virions (114S), an amount that could be detected by neither SDS-PAGE nor UV spectroscopy, to a later reaction mixture as an internal S-value standard. After rate-zonal sedimentation, gradients were titered.

Fig. 2. The oligomeric state of the D protein before and after purification. (a) Native-PAGE of whole-cell lysates with (+) and without (−) the induction of the cloned D gene. (b) D protein after purification. M indicates the native molecular weight marker used as a standard.

Fig. 3. Sedimentation profile of in vitro procapsid assembly and single-component reactions. Reaction products were separated by rate-zonal sedimentation as described in the text. Symbols: open circles, external scaffolding protein alone; open squares, 12S* particles alone; and filled triangles, 12S* particles and external scaffolding protein.
Infectivity roughly co-migrated with the \textit{in vitro} synthesized particles (data not shown).

While electron micrographs of negatively stained, \textit{in vitro} synthesized particles revealed spherical, stain-penetrated structures \(\sim 27\) nm in diameter (Fig. 4c), a negative stain reconstruction was performed to more clearly demonstrate that the assembled particles were intact, not aberrantly shaped, and contained an external scaffolding protein lattice. The final resolution of the reconstruction was 23 Å. The presence of the phosphotungstic acid stain gives the \textit{in vitro} assembled particles a more rounded appearance (Fig. 5a) compared to the low-resolution model calculated from the Protein Data Bank coordinates (Fig. 5b). However, the density of the spike protein pentamers and the external scaffolding protein lattice is clearly evident.

\textbf{Crowding agents were essential for \textit{in vitro} assembly}

In optimizing the conditions, all experiments discussed here and below were conducted with the same preparation of 12S\(^*\) particles and external scaffolding protein. To minimize any unforeseen problems associated with particle degradation, we performed all experiments within a 5-day time period. As no particles were observed migrating between \textit{in vitro} assembled procapsids and unassembled components, the sedimentation profiles in Fig. 6 depict only the faster sedimenting fractions in which procapsids, if assembled, would be present.

As seen in other scaffolding-mediated \textit{in vitro} assembly systems,13,22,27,32 the concentration of the crowding agent significantly affected yields (Fig. 6a). No assembled particles were detected by UV spectroscopy of gradient fractions or SDS-PAGE followed by silver staining (data not shown) when the crowding agent PEG-3350 was omitted (black) or held at 2.0\% (magenta). Increasing crowding agent concentrations resulted in progressively

\begin{table}[h]
\centering
\caption{Relative protein composition of procapsids synthesized \textit{in vitro} and \textit{in vivo}}
\begin{tabular}{lcc}
\hline
Protein & \textit{In vitro} & \textit{In vivo} \\
\hline
Coat F & 1.0 & 1.0 \\
DNA pilot H & 0.24 & 0.21 \\
Major spike G & 0.21 & 0.17 \\
Internal scaffolding B & 0.07 & 0.09 \\
External scaffolding D & 0.95 & 0.92 \\
\hline
\end{tabular}
\end{table}

Digitized images of the gels presented in Fig. 4b were analyzed with NIH ImageJ software. The relative amount of each protein was determined by comparing the intensity of each protein band to the coat protein in each sample.
higher yields (4.0%, orange; 8.0%, green; 10%, blue). No larger particles were detected in single-component reactions conducted in 10% PEG-3350 (red and turquoise). To estimate assembly efficiency, we digitized and analyzed silver-stained gels of all gradient fractions using the National Institutes of Health (NIH) ImageJ software. The percentages of assembled components are given in Table 2, lines 1–5. As the coat protein is the easiest component of the 12S* particle to visualize, it was used to follow 12S* particles. Due to the inherent error associated with conducting densitometry on multiple silver-stained gels, the values should be regarded as approximations that highlight trends in the data.

The external scaffolding:coat protein ratio strongly influences reaction yields

Unlike single-scaffolding protein assembly systems,15,27,28,32,48 there are strict stoichiometric relationships between the coat and both scaffolding proteins. The external scaffolding:coat protein ratio in the procapsid is 4:1. This >1 ratio is unique to the øX174 procapsid. To determine how protein ratios affect assembly, we varied D protein concentrations. The 12S* particle and PEG-3350 (w/v) concentrations were held constant at 0.18 mg/ml and 10%, respectively. Although UV spectroscopy did not detect procapsids in gradient fractions derived from the 3:1 scaffolding:coat protein reaction (Fig. 6b, magenta), both proteins were visualized by SDS-PAGE and silver staining (data not shown). However, only ~5% of the coat protein was found in assembled particles (Table 2, lines 6–9). As the scaffolding:coat ratio increased, yields improved (Fig. 6b, in increasing order: orange; green and blue; Table 2, lines 6–9). In similar experiments, the 12S* concentration was varied, and the D protein concentration was held constant at 0.40 mg/ml (Fig. 6c and Table 2, lines 10–13). Assembled particles could be detected with a 12S* concentration as low as 0.045 mg/ml (Table 2, line 10).

In vitro assembly is relatively insensitive to ionic conditions

Ionic conditions are known to influence the efficiency of other scaffolding protein-mediated in vitro assembly reactions.30,32,49 Optimal yields are usually obtained under low ionic conditions. To determine if the øX174 system exhibited a similar sensitivity, we examined yields as a function of NaCl concentrations between 2.5 and 80 mM. The respective concentrations of PEG-3350, external scaffolding protein and 12S* particles were 10% (w/v), 0.40 mg/ml and 0.18 mg/ml. As can be seen in Fig. 6d, in vitro assembly appears to be relatively insensitive within this NaCl concentration range, which is consistent with the nature of the interactions observed in the procapsid.20,21

Discussion

Several factors may have complicated past analyses of the early øX174 morphogenetic pathway. Consequently, the exact identities of the early intermediates have been somewhat obscure.34 Procedural modifications led to the isolation of a novel assembly intermediate, the 12S* particle.33 It consists of the coat, spike, internal scaffolding and DNA pilot proteins in a 5:5:5:1 ratio, a protein composition consistent with structural and genetic data.18,20,21 Along with the external scaffolding protein, it can be assembled into procapsid-like particles in vitro, strongly suggesting that it is the bona fide assembly intermediate.

The external scaffolding protein, which has been observed in several oligomeric states in solution,1,46,47 was purified from cells expressing a cloned gene. While several oligomers were observed in crude extracts, only one form, presumably a tetramer, was present after purification. Either this tetramer is the assembly-reactive species or the active form can be generated from it. Internal and external scaffolding protein oligomers have been observed in many viral systems.22,26,50 The Sid protein, an external scaffolding protein, exists as a trimer in solution.23 Bacteriophage P22 internal scaffolding protein dimers promote capsid nucleation, whereas monomers participate in elongation.31

As seen in other systems,22,27,32 the crowding agent promoted efficiency. While it seemed to stimulate scaffolding–scaffolding interactions, it did not appear to promote coat–coat interactions between 12S* particles. In contrast, crowding agents promote bacteriophage ø29 coat–coat interactions.
but have little or no effect on the scaffolding protein.27 This may reflect differences between the ø29 procapsid, in which coat–coat interactions constitute the primary lattice-forming contacts, and the øX174 procapsid, which is held together by the external scaffolding protein. The 2- and 3-fold related coat protein contacts observed in the øX174 virion structure51,52 do not form until the external scaffolding protein:coat protein ratios (D:F) and external scaffolding protein concentrations are given within the figure. The respective 125* particle and PEG-3350 concentrations were held at 0.18 mg/ml and 10% (w/v). The external scaffolding protein:coat protein = 30:1, reactions conducted at the lowest 125* particle concentration (0.045 mg/ml) resulted in ~90% coat protein assembly. Similar yields were achieved at 24:1, 18:1 and 12:1 ratios. However, in 3:1 and 6:1 reactions, the assembled coat protein values were 5.0 and 50%, respectively. At the lower ratios, the external scaffolding protein may have fallen below the critical concentration required to nucleate assembly, and/or kinetically trapped, partially formed procapsids were produced. If the latter, the trapped intermediates lack stability and degraded into unassembled components. Proteins were never detected within the intermediate sedimenting fractions, the position where stable, partially formed procapsids would be expected to migrate.

Although the analyses presented here lacked the kinetic component needed to determine critical concentrations and distinguish between nucleation and elongation phases, the reaction’s sensitivity to external scaffolding:coat protein ratios may offer some limited insights. The scaffolding:coat protein ratio in the procapsid is 4:1. In the presence of excess external scaffolding protein (scaffolding:coat protein = 30:1), reactions conducted at the lowest 125* particle concentration (0.045 mg/ml) resulted in ~90% coat protein assembly. Similar yields were achieved at 24:1, 18:1 and 12:1 ratios. However, in 3:1 and 6:1 reactions, the assembled coat protein values were 5.0 and 50%, respectively. At the lower ratios, the external scaffolding protein may have fallen below the critical concentration required to nucleate assembly, and/or kinetically trapped, partially formed procapsids were produced. If the latter, the trapped intermediates lack stability and degraded into unassembled components. Proteins were never detected within the intermediate sedimenting fractions, the position where stable, partially formed procapsids would be expected to migrate.

The øX174 in vitro reaction appeared to be relatively insensitive to ionic conditions. Salt concentrations high enough to inhibit other scaffolding protein-mediated reactions22,27,30,32 had no observable effect on øX174 assembly. This suggests that the 125*→procapsid transition may primarily be driven by hydrophobic interactions, which is consistent with the atomic structure of the external scaffolding
protein lattice.20,21 The vast majority of scaffolding–scaffolding protein interactions are hydrophobic in nature. Similarly, low ionic conditions did not impact assembly as they do during hepatitis B virus and papillomavirus assembly.23,26 In the hepatitis B virus system, coat protein dimers exist in several conformations. Low ionic conditions favor conformations that are structurally incompatible with dimer–dimer interactions and by extension capsid assembly.29 It is unlikely that all stages of øX174 assembly will display this insensitivity. The current system only investigates the 12S* \rightarrow procapsid transition. Considering that most interactions between the coat and the spike protein pentamers are water mediated,31,32 electrostatic forces are likely to play a more significant role in 12S* particle morphogenesis.

\section*{Materials and Methods}

\textit{Escherichia coli} cell lines, øX174 strains and plasmids

The øX174 mutant am(C)510, which contains an amber codon at position 10 of gene C, was generated by site-directed mutagenesis as previously described.35 It was used to generate procapsids \textit{in vivo} (see below). The øX174 nullD strain, øX174 D9 fs440, was used to generate 12S* particles (see below). The strain contains a deletion (D9) of the first nine codons, nucleotides 396–419 in the genome sequence,36 and a frame-shift mutation, a deletion of nucleotide 440. Its isolation was identical with that of øX174 D9 fs440 which has been previously described.37 These two strains, which were isolated at the same time, differ only in the spontaneous fs440 mutation. Stocks were prepared in BAF30 pDNco, a recA derivative of \textit{E. coli} C12238 containing an IPTG-inducible, wild-type D gene. To construct pDNco, we placed an NcoI site, containing a start codon, at the beginning of the gene using a mutagenic upstream primer during PCR reactions. The D gene in plasmid pND33 served as a template. The downstream primer annealed to the multi-cloning site. PCR products were digested with NcoI and HindIII and ligated into pSE420 (Invitrogen) digested with the same enzymes. The C900 \textit{E. coli} strain used to generate 12S* particles (see below) contains the slyD mutation, which confers resistance to E-protein-mediated lysis.39 All plating and stock preparation protocols have been previously described.40

\subsection*{12S* particle synthesis and purification}

For generation of 12S* particles, 100 ml of \textit{E. coli} C900 (slyD) was grown to a concentration of 1.0 \times 10^8 cells/ml in TKY broth (1.0% tryptone, 0.5% KCl and 0.5% yeast extract) at 37 °C. Immediately prior to infection, MgCl$_2$ and CaCl$_2$ were added to respective concentrations of 10 mM and 5.0 mM. Cells were infected with øX174 D9 fs440 at a multiplicity of infection of 5.0 and incubated for 3 h. Infected cells were concentrated by centrifugation, and the resulting pellet was resuspended in 2.0 ml of 100 mM NaCl, 5.0 mM ethylenediaminetetraacetic acid (EDTA), 6.4 mM Na$_2$HPO$_4$ and 3.3 mM KH$_2$PO$_4$ (pH 7.0). Cell lysis was accomplished by adding egg white lysozyme (3.0 mg/ml) and incubating on ice for 30 min. After incubation, 20 μl CHCl$_3$ was added, and the reaction was incubated at 37 °C for 2.0 min, followed by sonication on ice for 8.0 min. Debris was removed by centrifugation (10 min at 16,000g). The resulting supernatant was concentrated to 200 μl in a Nanosep® centrifugal filter column (30-kDa cutoff). The extract was then loaded atop a 5–30% sucrose gradient (w/v) made in 100 mM NaCl, 5.0 mM EDTA, 6.4 mM Na$_2$HPO$_4$ and 3.3 mM KH$_2$PO$_4$ (pH 7.0). Gradients were spun at 108,000g for 16 h at 4 °C. After centrifugation, gradients were separated into approximately sixty 80-μl fractions. The location of the 12S* particle in the gradient was determined by SDS-PAGE analysis of fractions.

\subsection*{External scaffolding protein synthesis and purification}

For generation of the external scaffolding protein, 1.5 l of TKY broth (without ampicillin) was inoculated with

\begin{table}[h]
\centering
\caption{Conditions and approximate efficiencies of \textit{in vitro} assembly reactions}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Sample & PEG (w/v) (%) & D (mg/ml) & 12S* (mg/ml) & Molar ratio D:coat & Approximate % assembled D Coat \tabularnewline \hline
1 & 0 & 0.24 & 0.18 & 7:1 & NAD NAD\tabularnewline
2 & 2.0 & 0.24 & 0.18 & 7:1 & NAD NAD\tabularnewline
3 & 4.0 & 0.24 & 0.18 & 7:1 & 31 63\tabularnewline
4 & 8.0 & 0.24 & 0.18 & 7:1 & 41 73\tabularnewline
5 & 10 & 0.24 & 0.18 & 7:1 & 41 76\tabularnewline
6 & 10 & 0.1 & 0.18 & 3:1 & 26 5\tabularnewline
7 & 10 & 0.24 & 0.18 & 7:1 & 44 51\tabularnewline
8 & 10 & 0.3 & 0.18 & 9:1 & 49 73\tabularnewline
9 & 10 & 0.4 & 0.18 & 12:1 & 45 92\tabularnewline
10 & 10 & 0.4 & 0.045 & 30:1 & 30 >90\tabularnewline
11 & 10 & 0.4 & 0.090 & 24:1 & 32 88\tabularnewline
12 & 10 & 0.4 & 0.135 & 18:1 & 45 89\tabularnewline
13 & 10 & 0.4 & 0.180 & 12:1 & 48 83\tabularnewline
\hline
\end{tabular}
\\[a\] NAD, no assembly detected.
\\[b\] >90a indicates an estimate as no protein was detected in the unassembled fractions.
\end{table}
15 ml of a fresh overnight of BAF30 pND. The culture incubated for 2 h at 37 °C and then was transferred to room temperature. The cloned gene was then induced by IPTG (0.75 mM). The culture incubated, while shaking, for an additional 22 h at room temperature. Cells were concentrated by centrifugation and resuspended in 20 ml of 20 mM Tris–HCl, pH 8.0. Cell lysis was performed as described above but with the omission of the sonication step. Cell debris was removed by centrifugation (20 min at 10,000 g).

Successive ammonium sulfate precipitations, starting at 20% saturation, were performed to determine the optimal conditions for external scaffolding protein isolation. After the addition of (NH₄)₂SO₄, samples were incubated at 4 °C for 4 h with gentle stirring. Precipitant was collected by centrifugation (20 min at 10,000 g). Pellets were resuspended in 10 ml of 20 mM Tris–HCl (pH 8.0). Additional (NH₄)₂SO₄ was added to the supernatant, and the procedure was repeated. Successive precipitations were performed at 30%, 40%, 50% and 60% saturations. Protein D efficiently precipitated at 30% (NH₄)₂SO₄ saturation, as determined by SDS-PAGE. The resuspended 30% (NH₄)₂SO₄ pellet was dialyzed (3.5-kDa cutoff) against 700 ml of 20 mM Tris–HCl, pH 8.0, for 12 h at 4 °C. The dialyzed sample was spun for 20 min at 10,000 g to remove remaining precipitant. Only D protein was detected by SDS-PAGE followed by Coomassie blue staining and silver staining. By subsequent densitometry, the protein was estimated to be 85–90% pure. Protein concentrations were estimated using a Bradford assay kit (Thermo Scientific) following the manufacturer’s instructions.

Generation and purification of procapsids synthesized in vivo

For isolation of in vivo generated procapsids, 2 l of E. coli C900 (slyD) was grown to a concentration of 1.0 × 10⁸ cell/ml at 37 °C. Cells were infected, as described above, with amCS10 at a multiplicity of infection of 5. Protein C is essential for DNA packaging. Thus, procapsids accumulate in infected cells.™ Particles were isolated and purified as previously described.

In vitro assembly reactions and subsequent analyses

The 125* particles and D protein were mixed with buffer [100 mM Tris–HCl (pH 7.5), 5 mM NaCl and 20 mM MgCl₂] pre-warmed to 37 °C. The final concentration of the buffering components was kept constant at 50 mM Tris–HCl, 2.5 mM NaCl and 9.0 mM MgCl₂ by the addition of H₂O or/and other components, PEG-3350 and/or NaCl, as needed. In experiments that varied NaCl and PEG-3350 concentrations, the final concentrations of these components are given in the text. Final reaction volumes were 200 μl. After incubation for 40 min at 37 °C, reactions were loaded atop a 5–30% sucrose (w/v) gradient made in 100 mM NaCl, 5.0 mM EDTA, 6.4 mM Na₂HPO₄ and 3.3 mM KH₂PO₄ (pH 7.0) and spun at 192,000 g for 1 h. Gradients were divided into approximately forty 125-μl fractions and analyzed by UV spectroscopy (OD₂₈₀) and SDS-PAGE followed by Coomassie and silver staining.

Electron microscopy and image reconstruction

An aliquot of 3.0 μl of the in vitro procapsid sample was placed on a freshly glow-discharged continuous carbon-coated copper grid. Phosphotungstic acid negative stain was applied by standard drop method, and the sample was examined in a JEOL 1400 transmission electron microscope at 120 kV. For the three-dimensional reconstruction, 200 micrographs were collected with a Gatan Orius SC 1000 CCD camera with Digital Micrograph at a calibrated magnification of 22,510×. We selected 2032 in vitro particles (Fig. 4c) using e2boxer of EMAN2. We used 2031 particles for the reconstruction. These numbers were taken directly from the log file generated by the computer program. For reasons unknown, one particle was omitted; it was not intentionally rejected. The defocus distance ranged from 0.07 to 4.34 μm. The final pixel size was 4.0 Å. The reconstruction processes were performed using isosahedral averaging with the program Auto3dem, which generated a random model directly from the raw data as the initial starting structure. The final resolution of 23 Å was determined where the Fourier shell correlation fell below 0.5 as reported in the summary output file of Auto3dem. The final reconstruction was colored radially using the program Chimera. The X-ray crystallography structure was calculated from the Protein Data Bank file, accession number 1CD3, using pdb2mrc.

Acknowledgements

The authors thank Drs. R. Bernal and M. G. Rossmann for their assistance in generating Fig. 1a and Michael S. Carnegie for technical assistance. Molecular graphic images were produced using the University of California, San Francisco Chimera package from the Resource for Biocomputing, Visualization and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081). This work was supported by a grant from the NIH (AI07927) to S.H. and National Science Foundation (grant MCB 0948399) to B.A.F.

References

